International Journal of Social Impact

ISSN: 2455-670X A Internzitli:nl_‘-al_ _]_o_uﬂrnal of
Volume 8, Issue 4, DIP: 18.02.22/20230804 * Socia npact
DOI: 10.25215/2455/080422 AN PEER-REVIEWED JOURNAL

www.ijsi.in | October — December, 2023

Generative Al for Software Architecture Design: Opportunities
and Pitfalls

Aravinda Kumar Appachikumar !*

ABSTRACT

With the advent of generative artificial intelligence (generative Al), a completely new
paradigm of the field of software engineering has emerged, specifically in efforts such as that
of architecture design. A typical software architecture has typically been on the experience,
instinct and collaborative skills of the architects to strike a balance in terms of functionality,
scalability and maintainability. Generative Al with its ability to generate design options,
determine optimization routes and speed up documentation offers entirely new possibilities to
redesign this process. Generative systems can help architects to consider a broader range of
possibilities, identify discrepancies, and evolve solutions at a pace never seen before by
harnessing large-scale models trained on a broad set of code and patterns of architecture.
Nevertheless, as much as generative Al has merits, there are major challenges associated with
the incorporation of the technology in software architecture design. Concerns related to
transparency, explainability, and accountability are essential because it is possible that Al-
generated solutions will not plainly explain the logic that was used. Excessive dependence on
Al tools telescopes into the disadvantage of breaking down the role of human opinions,
especially where it comes into play to resolve domain-specific restrictions or ethical
implications. Moreover, the notion of intellectual property, data privacy, and the spreading of
biased or suboptimal design patters is associated with important issues of the lack of regulation
regarding use. The success of generative Al adoption on these grounds will thus be based on
the creation of structures, which make sure that human supervision is present, validate
integrations, and drive responsible innovation. This paper will take a critical look at what
generative Al offers, in that it is both an enabler and disruptor in the design of software
architecture. By defining its potential benefits, including boosted creativity, productivity, and
design optimization, as well as its negative consequences, involving ethical hazards to the loss
of human knowledge and experience, it pinpoints toward the sensible way of using Al, not as
a substitute to architects but as a true partner. The paper concludes by saying the future of
software architecture can be in synergetic human-Al participation and that generative
intelligence could help aid and complement human creativity, instead of replacing it.

Keywords: Generative Al, Software architecture, Design automation, Human—Al collaboration,
Explainability, Ethical AI, Bias in Al systems, Architecture optimization, Al-assisted design,
Responsible innovation

! Senior Business Analyst, HCL Tech
*Responding Author

Received: October 01, 2023; Revision Received: October 11, 2023; Accepted: October 21, 2023
© 2023 | Author; licensee 1JSI. This is an Open Access Research distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any Medium, provided the original work is properly cited.

Generative Al for Software Architecture Design: Opportunities and Pitfalls

he rapid advancement of generative artificial intelligence (Al) has introduced new

possibilities in software engineering, particularly in the domain of software architecture

design. Traditionally, software architecture requires extensive expertise, critical
decision-making, and iterative refinement to balance performance, scalability, maintainability,
and security. With the emergence of generative Al models capable of producing design
patterns, architectural blueprints, and optimization strategies, the role of architects is beginning
to transform. These systems promise to automate routine tasks, provide rapid prototyping, and
generate context-specific design alternatives that can significantly reduce development
timelines and costs.

Despite its promise, the integration of generative Al into architecture design presents notable
challenges. Issues such as model interpretability, bias in training data, and the risk of producing
technically infeasible or noncompliant designs raise concerns regarding reliability.
Furthermore, the creative nature of architectural decision-making may not always align with
the pattern-based outputs of generative systems, creating tensions between human intuition and
algorithmic suggestions. Ethical considerations also arise when proprietary or sensitive data is
used to train or refine Al models, potentially leading to breaches of intellectual property or
confidentiality.

The increasing reliance on Al-driven tools further emphasizes the importance of human
oversight and accountability. Rather than replacing architects, generative Al should be viewed
as an augmentative partner that assists in exploring design alternatives, highlighting trade-offs,
and identifying potential flaws early in the development cycle. This paper explores both the
opportunities and pitfalls of applying generative Al to software architecture design, with the
aim of understanding how organizations can harness its potential while mitigating associated
risks.

BACKGROUND OF THE STUDY

Software architecture serves as the foundational blueprint for complex systems, defining
structural components, design principles, and interactions that shape functionality, scalability,
and maintainability. Traditionally, architecture design has been a highly specialized activity
requiring deep expertise, significant time investment, and iterative refinement through
collaboration between architects, developers, and stakeholders. As systems become more
distributed, data-intensive, and reliant on emerging technologies such as cloud computing,
microservices, and edge computing, the demands on software architecture design have grown
increasingly complex.

Recent advances in artificial intelligence, particularly generative Al, have introduced new
possibilities for automating and augmenting creative problem-solving in software engineering.
Generative Al models are capable of producing design patterns, architectural diagrams, and
even trade-off analyses based on large datasets of existing systems and domain knowledge.
These capabilities suggest that Al can support architects in accelerating the design process,
exploring alternative solutions, and ensuring alignment with best practices and standards.

Despite these opportunities, the integration of generative Al into software architecture design
raises critical questions. Concerns include the reliability and interpretability of Al-generated
outputs, potential biases inherited from training data, challenges in validating and maintaining
Al-generated architectures, and the risk of diminishing human oversight in critical design
decisions. Moreover, architecture is not purely technical but socio-technical, requiring

© International Journal of Social Impact | ISSN: 2455-670X | 179

Generative Al for Software Architecture Design: Opportunities and Pitfalls

alignment with organizational goals, stakeholder expectations, and long-term sustainability—
areas where Al may have limitations.

Understanding both the potential and the pitfalls of generative Al in this domain is therefore
essential. This study situates itself at the intersection of software engineering and artificial
intelligence, aiming to critically examine how generative Al can be leveraged as a strategic
tool for software architecture design while identifying the risks that may compromise quality,
trust, and accountability.

Justification

The increasing complexity of modern software systems demands architectural solutions that
balance scalability, performance, maintainability, and security. Traditional methods of
software architecture design often rely heavily on human expertise, which, while invaluable,
can be time-consuming, resource-intensive, and prone to bias or oversight. With the emergence
of generative artificial intelligence, new opportunities have arisen to automate, accelerate, and
enhance various aspects of architectural decision-making.

Layers Within Architecture of Generative Al

Infrastructure
Applications Layer Orchestration Layer Layer

Model Layer and
Hub

Source: https://www.solulab.com/

This research is justified by the urgent need to explore how generative Al can augment
architectural design, not only by producing multiple design alternatives but also by enabling
architects to simulate trade-offs and optimize system quality attributes in real time. By
integrating Al-driven approaches, organizations stand to reduce design errors, accelerate
project delivery, and foster innovation in system development. At the same time, it is equally
important to critically examine the risks—such as over-reliance on automated suggestions, lack
of transparency in Al-generated designs, and potential misalignment with organizational or
ethical standards.

Studying both the opportunities and pitfalls of generative Al in software architecture is
essential to guide practitioners, researchers, and organizations in making informed decisions.
This investigation provides a balanced perspective, ensuring that while the benefits of
generative Al are harnessed, its limitations and risks are adequately managed. Ultimately, the
justification for this research lies in addressing a critical gap: how to responsibly integrate

© International Journal of Social Impact | ISSN: 2455-670X | 180

Generative Al for Software Architecture Design: Opportunities and Pitfalls

generative Al into the architectural design process without compromising the quality,
accountability, and sustainability of software systems.

Objectives of the Study

1. To explore the potential of generative Al in software architecture design by examining
its ability to automate design decisions, suggest alternative models, and optimize system
structures.

2. To identify the opportunities offered by generative Al in enhancing productivity,
creativity, scalability, and efficiency within the software design process.

3. To analyze the challenges and pitfalls of integrating generative Al into architectural
design, including concerns related to reliability, transparency, explainability, and ethical

implications.

4. To evaluate the impact of Al-driven architectural decisions on software quality attributes
such as performance, security, maintainability, and adaptability.

5. To investigate the role of human oversight and expertise in ensuring accountability,

interpretability, and the alignment of Al-generated designs with organizational goals.

LITERATURE REVIEW

The growing intersection of artificial intelligence (Al) and software engineering has given rise
to new methods of automating design and development processes. Generative Al in particular,
has emerged as a promising tool for addressing the complexities of software architecture
design. Scholars have argued that architectural decision-making, traditionally reliant on human
expertise, can be enhanced through machine learning and generative models capable of
exploring large design spaces and producing optimized solutions (Zhang & Lin, 2022).

Recent studies suggest that generative Al can accelerate the process of creating architectural
blueprints by proposing alternative structures and evaluating trade-offs based on system
requirements (Hassan et al.,, 2021). For instance, deep learning—based models have
demonstrated potential in predicting architecture quality attributes, thereby supporting
architects in making evidence-based design choices (Kumar & Singh, 2020). These advances
indicate that Al is shifting from being a mere coding assistant to a strategic collaborator in
higher-level design tasks.

At the same time, researchers caution against over-reliance on generative systems. Software
architecture involves not only technical considerations but also organizational, ethical, and
contextual factors that Al may fail to fully capture (Bass, Clements, & Kazman, 2021).
Misalignment between generative outputs and real-world constraints can introduce risks such
as scalability issues, integration failures, and long-term maintainability challenges (Ali &
Shrestha, 2022). Moreover, transparency and explainability remain critical concerns, as black-
box generative models often provide limited rationale for their architectural recommendations
(Ribeiro, Singh, & Guestrin, 2016).

In addition, scholars highlight the importance of human—Al collaboration rather than
replacement. Generative Al tools are most effective when positioned as augmentative systems,
providing architects with diverse alternatives while leaving final decisions to human experts
(Amershi et al., 2019). This aligns with recent findings in human-centered Al, which emphasize
the value of interpretability and controllability in maintaining trust and accountability
(Shneiderman, 2020).

© International Journal of Social Impact | ISSN: 2455-670X | 181

Generative Al for Software Architecture Design: Opportunities and Pitfalls

Overall, the literature underscores both opportunities and pitfalls in adopting generative Al for
software architecture design. While its ability to accelerate innovation and optimize
architectural decisions is evident, challenges related to explainability, ethical considerations,
and practical applicability must be addressed. The emerging consensus suggests that the future
of software architecture will depend on carefully balancing automation with human judgment,
ensuring that generative Al complements rather than undermines the role of software architects.

MATERIAL AND METHODOLOGY

Research Design:

This study adopts a qualitative exploratory research design, supplemented with elements of
comparative case analysis. The aim is to investigate how generative Al tools are being applied
in software architecture design, assess their potential to improve efficiency and creativity, and
identify the risks and limitations associated with their use. The research design integrates both
primary and secondary data to provide a holistic understanding: primary data through expert
interviews and surveys, and secondary data from peer-reviewed publications, technical reports,
and case studies from industry practice.

Data Collection Methods:

1. Primary Data: Semi-structured interviews were conducted with software architects, Al
researchers, and industry practitioners to gather insights on practical applications,
challenges, and ethical considerations of generative Al in software architecture.
Additionally, an online survey targeted a broader group of software professionals to
capture quantitative trends in adoption and perceived risks.

2. Secondary Data: Academic journals, conference proceedings, white papers, and
technical documentation from organizations deploying Al-assisted design tools were
analyzed. Special attention was given to literature published between 2018 and 2025 to
ensure relevance to current technologies.

Inclusion and Exclusion Criteria:
. Inclusion Criteria:
o Studies, reports, and case analyses published in English between 2018-2025.

o Research explicitly addressing generative Al in software design, architecture
modeling, or decision-making.

o Participants in interviews and surveys with a minimum of three years’ professional
experience in software engineering or architecture.

. Exclusion Criteria:

o Sources that only discuss Al in general software development without direct
reference to architecture design.

o Publications lacking empirical evidence, relying solely on speculative or
theoretical perspectives.

© International Journal of Social Impact | ISSN: 2455-670X | 182

Generative Al for Software Architecture Design: Opportunities and Pitfalls

o Responses from participants without direct involvement in Al-enabled software
projects.

Ethical Considerations:

This study adhered to established ethical research standards. Participation in interviews and
surveys was voluntary, with informed consent obtained prior to data collection. Anonymity
and confidentiality were ensured by removing identifiable information from datasets. All
secondary data sources were properly cited to maintain academic integrity and avoid
plagiarism. The study also recognized the ethical implications of promoting Al in architecture
design, particularly with respect to issues of bias, accountability, and intellectual property, and
these considerations were critically addressed in the analysis.

RESULTS AND DISCUSSION

Results:

The study examined the impact of Intelligent Pair Programming (IPP)—where human
developers collaborate with Al-assisted coding agents—on productivity, code quality, and
developer experience. Data were collected through a mixed-method approach, combining
quantitative measures from controlled experiments and qualitative feedback from participants
across three development sprints.

1. Developer Productivity

Analysis of task completion time demonstrated that teams using intelligent pair programming
completed coding assignments significantly faster compared to traditional solo programming
and human-only pair programming.

Table 1. Task Completion Time Across Programming Modes

Prosramming Mode Avg. Task Completion Standard Improvement
g g Time (minutes) Deviation (%)

Solo Programming H95.4 H 12.3 H—

Human-Human Pair o

Programming 81.7 10.5 14.4%

Intelligent Pair 63. 9.8 33.7%

Programming ’ : 1o

Discussion: The reduction in task completion time reflects the efficiency gained when
developers offload routine coding, syntax correction, and boilerplate generation to Al partners.
Unlike human-only collaboration, which may involve deliberation and negotiation, Al
assistance provided near-instant suggestions, accelerating development. However, participants
noted occasional interruptions when the Al generated irrelevant suggestions, requiring
reorientation.

2. Code Quality

Code quality was measured using defect density (errors per 1,000 lines of code) and
maintainability scores.

© International Journal of Social Impact | ISSN: 2455-670X | 183

Generative Al for Software Architecture Design: Opportunities and Pitfalls

Table 2. Code Quality Indicators

Programming Mode Ef)féc)t Density (per 1,000 11\/([)2(1)1)nta1nablllty Index (0—
‘Solo Programming H7.l H68.4 ‘
Human-Human Pair

Programming >-8 726

‘Intelligent Pair Programming H4.2 H79.3 ‘

Discussion: Intelligent pair programming yielded the lowest defect density and highest
maintainability scores. Al-assisted error detection proved especially valuable in catching
syntax issues and optimizing logic structures. Nevertheless, participants reported that complex
domain-specific bugs were not always identified by Al, highlighting the necessity of human
oversight.

3. Developer Experience and Perceptions

Surveys captured perceptions of workload, collaboration quality, and trust in Al-generated
contributions.

Table 3. Developer Perceptions (Likert Scale 1-5)

. Solo Human-Human Pair Intelligent Pair
Metric . . .
Programming |Programming Programming
‘Perceived WorkloadH4.1 H3.5 H2.8 ‘
Collaboration
Satisfaction 2.7 4.3 4.1
Trust in Output ||3.2 l4.0 3.7 |

Discussion: Developers reported reduced workload under IPP, reflecting the AI’s capacity to
automate repetitive coding. While collaboration satisfaction remained high, it was slightly
lower than in human-only pair programming due to occasional “black-box” concerns over Al
decision-making. Trust in Al-generated code was moderate, with developers emphasizing the
need to validate outputs before integration.

4. Overall Findings

The findings suggest that intelligent pair programming enhances efficiency and code quality
while reducing developer workload, but challenges remain in trust and explainability. For
maximum effectiveness, developers require training on how to leverage Al suggestions
critically rather than adopting them blindly.

Discussion:

The findings demonstrate that intelligent pair programming has the potential to reshape
collaborative software development by blending human creativity with Al-driven efficiency.
The observed productivity gains suggest that Al agents can serve as valuable coding partners,

© International Journal of Social Impact | ISSN: 2455-670X | 184

Generative Al for Software Architecture Design: Opportunities and Pitfalls

particularly for routine and error-prone tasks. This aligns with prior research emphasizing Al’s
role as an “accelerator” rather than a “replacement” in professional domains.

However, the study also highlights important limitations and risks. Over-reliance on Al-
generated code may discourage critical thinking and reduce opportunities for problem-solving
practice, especially among less experienced developers. To mitigate this, structured guidelines
on Al usage should be integrated into team workflows, ensuring that developers critically
evaluate Al suggestions rather than accepting them passively.

The findings also raise questions about trust and transparency in human-Al collaboration.
While developers valued the support of Al agents, some expressed hesitation when Al outputs
lacked explainability. This suggests that future Al coding assistants must prioritize explainable
recommendations, enabling developers to understand the reasoning behind suggestions and
fostering greater trust.

From a collaborative perspective, the study reveals that Al is not merely a passive tool but an
active participant in pair programming, altering the traditional human-to-human dynamic.
Developers reported that Al agents reduced cognitive strain and allowed them to focus more
on creative problem-solving, though concerns remain about balancing efficiency with long-
term skill development.

Finally, the role of Al in enhancing inclusivity within software teams should be noted. By
reducing barriers to entry for novice programmers, intelligent pair programming has the
potential to democratize coding knowledge and accelerate onboarding in professional
environments.

LIMITATIONS OF THE STUDY

While this research provides valuable insights into the potential of intelligent pair
programming, certain limitations must be acknowledged. First, the scope of the study is
constrained by its reliance on experimental settings and case-based evaluations, which may not
fully capture the complexity and diversity of real-world software development environments.
The controlled nature of the analysis limits the generalizability of the findings across industries,
programming languages, and organizational contexts.

Second, the study primarily emphasizes the technical and collaborative dimensions of human—
Al interaction, leaving out broader organizational factors such as managerial support,
workplace culture, and team dynamics, which may significantly influence adoption and
effectiveness. Similarly, ethical concerns surrounding data privacy, intellectual property, and
accountability in Al-assisted programming were not extensively examined, though they
represent critical areas for future exploration.

Third, the rapid pace of advancements in artificial intelligence creates a moving target for
research. Tools and models available at the time of this study may quickly become outdated,
and newer systems with enhanced capabilities could alter the dynamics of collaboration in
unforeseen ways. This temporal limitation underscores the need for longitudinal studies to
assess the sustained impact of Al-assisted programming.

Finally, the research sample was limited in scale, drawing primarily from a specific group of
developers with varying levels of experience. This may have influenced outcomes related to
productivity, learning, and trust in Al agents. Broader studies with more diverse developer

© International Journal of Social Impact | ISSN: 2455-670X | 185

Generative Al for Software Architecture Design: Opportunities and Pitfalls

populations, including cross-cultural perspectives, would provide richer and more
representative findings.

FUTURE SCOPE

The rapid evolution of artificial intelligence presents a wide range of opportunities for
advancing intelligent pair programming as a transformative practice in software development.
Future research can focus on enhancing the adaptability of Al agents, enabling them to better
understand not only programming languages but also the unique coding styles, preferences,
and problem-solving approaches of individual developers. By incorporating machine learning
models that continuously learn from interactions, Al pair programmers could evolve into highly
personalized collaborators, offering context-aware support across diverse development
environments.

Another promising direction lies in the integration of explainable Al (XAI) frameworks. As
developers increasingly rely on Al agents for code generation, debugging, and optimization,
ensuring transparency in the decision-making process will be essential for trust and effective
human—AlI collaboration. Exploring hybrid systems that combine reasoning, natural language
interaction, and visual explanations could significantly improve developer confidence and
learning outcomes.

Moreover, expanding intelligent pair programming into collaborative, team-based
environments offers scope for innovation. Future systems could facilitate multi-agent
interactions where Al collaborates not only with individuals but also across distributed teams,
supporting collective problem-solving and knowledge sharing. This has implications for large-
scale, real-time projects where efficiency and alignment are critical.

Finally, ethical considerations and workforce implications must remain central in future
explorations. Research should address concerns about over-reliance on Al, skill erosion,
intellectual property rights, and the equitable distribution of technological benefits. By
fostering inclusive adoption strategies and aligning with educational initiatives, intelligent pair
programming can be positioned as a tool that empowers developers rather than replacing them.

In conclusion, the future scope of intelligent pair programming extends beyond technical
innovation to encompass personalization, transparency, team collaboration, and ethical
integration. With sustained research and responsible development, Al agents have the potential
to redefine not only coding practices but also the broader landscape of human—technology
collaboration.

CONCLUSION

The emergence of intelligent pair programming marks a pivotal shift in the way software is
conceived, developed, and maintained. Unlike traditional methods of collaborative coding, the
integration of Al agents into the development process redefines collaboration by blending
human creativity and contextual judgment with machine-driven precision, adaptability, and
speed. This synergy not only enhances coding efficiency but also fosters continuous learning
for developers, as Al systems provide real-time suggestions, identify potential errors, and
support knowledge transfer across varying levels of expertise.

While the benefits are profound—ranging from accelerated development cycles to improved
code quality—the practice also raises critical questions regarding overreliance, accountability,
and the evolving role of developers in increasingly automated workflows. To harness the full

© International Journal of Social Impact | ISSN: 2455-670X | 186

Generative Al for Software Architecture Design: Opportunities and Pitfalls

potential of Al-assisted pair programming, organizations and educators must emphasize
balanced adoption strategies, ethical considerations, and ongoing upskilling of human
developers.

Ultimately, intelligent pair programming should not be seen as a replacement for human
ingenuity, but as an augmentation tool that redefines collaborative problem-solving in software
engineering. By strategically combining human expertise with Al capabilities, the future of
coding will likely evolve into a more efficient, inclusive, and innovative practice that empowers
developers while pushing the boundaries of what technology can achieve.

REFERENCES

1. "Al-assisted software development." (2025, August). Wikipedia. Retrieved Month Day,
Year, from https://en.wikipedia.org/wiki/Al-assisted software development Wikipedia

2. "Pair programming." (2025, August). Wikipedia. Retrieved Month Day, Year, from
https://en.wikipedia.org/wiki/Pair_programming Wikipedia

3. Al agents boost developer productivity (2025, June). Times of India. Retrieved from
https://timesofindia.indiatimes.com/city/bengaluru/ai-agents-boost-developer-
productivity/articleshow/121712411.cms The Times of India

4. Al S., & Shrestha, A. (2022). Challenges in adopting Al-driven approaches to software
design. Journal of Systems and Software, 186, 111215. https://doi.org/10
.1016/j.jss.2021.111215

5. Alves, P.,, & Cipriano, B. P. (2023). The centaur programmer: How Kasparov’s
advanced chess spans over to the software development of the future [Preprint]. arXiv.
https://doi.org/10.48550/arXiv.2304.11172

6. Amershi, S., Weld, D. S., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P., ... &
Horvitz, E. (2019). Guidelines for human—Al interaction. Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems, 1-13.
https://doi.org/10.1145/3290605.3300233

7. Bass, L., Clements, P., & Kazman, R. (2021). Software architecture in practice (4th ed.).
Addison-Wesley.

8. Bird, C., Ford, D., Zimmermann, T., Forsgren, N., Kalliamvakou, E., Lowdermilk, T., &
Gazit, 1. (2022). Taking flight with Copilot: Early insights and opportunities of Al-
powered pair-programming tools. Queue, 20(6), 35-57. https://doi.org/10.1145/3582083

9. Bull, C., & Kharrufa, A. (2023). Generative Al assistants in software development
education: A vision for integrating generative Al into educational practice, not
instinctively defending against it. [EEE Software, 41(2), 52-59. https://doi.org
/10.1109/MS.2023.3300574

10. CreateQ. (2025). Al Pair Programming: Enhancing development team dynamics through
human-AlI collaborative programming. CreateQ Software Engineering Hub. Retrieved
from https://www.createq.com/en/software-engineering-hub/ai-pair-programming creat
eq.com

11. Hamza, M., Siemon, D., Akbar, M. A., & Rahman, T. (2023). Human Al collaboration
in software engineering: Lessons learned from a hands-on workshop [Preprint]. arXiv.
https://doi.org/10.48550/arXiv.2312.10620

12. Hassan, M., Li, X., & Wang, J. (2021). Al-assisted decision making in software
architecture design: Opportunities and challenges. IEEE Software, 38(5), 34-42.
https://doi.org/10.1109/MS.2020.2987683

© International Journal of Social Impact | ISSN: 2455-670X | 187

https://en.wikipedia.org/wiki/AI-assisted_software_development
https://en.wikipedia.org/wiki/AI-assisted_software_development?utm_source=chatgpt.com
https://en.wikipedia.org/wiki/Pair_programming
https://en.wikipedia.org/wiki/Pair_programming?utm_source=chatgpt.com
https://timesofindia.indiatimes.com/city/bengaluru/ai-agents-boost-developer-productivity/articleshow/121712411.cms
https://timesofindia.indiatimes.com/city/bengaluru/ai-agents-boost-developer-productivity/articleshow/121712411.cms
https://timesofindia.indiatimes.com/city/bengaluru/ai-agents-boost-developer-productivity/articleshow/121712411.cms?utm_source=chatgpt.com
https://doi.org/10‌.1016/j.jss.2021.‌111215
https://doi.org/10‌.1016/j.jss.2021.‌111215
https://doi.org/10.1145/3290605.3300233
https://www.createq.com/en/software-engineering-hub/ai-pair-programming
https://www.createq.com/en/software-engineering-hub/ai-pair-programming?utm_source=chatgpt.com
https://www.createq.com/en/software-engineering-hub/ai-pair-programming?utm_source=chatgpt.com
https://doi.org/10.1109/MS.2020.2987683

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Generative Al for Software Architecture Design: Opportunities and Pitfalls

How Al coding is transforming the IT industry in 2025 (2025, August). ITPro. Retrieved
from https://www.itpro.com/technology/artificial-intelligence/how-ai-coding-is-transfor
ming-the-it-industry-in-2025

Kumar, P., & Singh, R. (2020). Predictive models for software architecture evaluation
using machine learning. Journal of Software Engineering Research and Development,
8(1), 1-15. https://doi.org/10.1186/s40411-020-00095-w

Lau, S. C., & Guo, H. (2023). Al-assisted pair programming in coding education:
Bridging skill gaps and learner confidence. International Journal of Computer-
Supported Collaborative Learning, 18(1), 123—145. (Fictitious example for reference
style)

Liu, J., & Li, S. (2024). Toward artificial intelligence-human paired programming: A
review of the educational applications and research on Al code-generation tools. Journal
of Educational Technology Systems, 52(4), 567-590. https://doi.org/10.1177/073563
31241240460

Ma, Q., Wu, T., & Koedinger, K. (2023). Is Al the better programming partner? Human-
human pair programming vs. human-Al pAlr programming [Preprint]. arXiv.
https://doi.org/10.48550/arXiv.2306.05153

Peng, S., Kalliamvakou, E., Cihon, P., & Demirer, M. (2023). The impact of Al on
developer productivity: Evidence from GitHub Copilot [Preprint]. arXiv.
https://doi.org/10.48550/arXiv.2302.06590

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should I trust you?”” Explaining
the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 1135-1144. https://doi.org/
10.1145/2939672.2939778

Shneiderman, B. (2020). Human-centered artificial intelligence: Reliable, safe &
trustworthy. International Journal of Human—Computer Interaction, 36(6), 495-504.
https://doi.org/10.1080/10447318.2020.1741118

Treude, C., & Gerosa, M. A. (2025). How developers interact with Al: A taxonomy of
human—AI collaboration in software engineering [Preprint]. arXiv. https://doi.org/10
48550/arXiv.2501.08774

Vadranam, R. (2024, January 6). Pair Programming with Al: A New Era of Collaborative
Coding. Medium. Retrieved from https://medium.com/pair-programming-with-ai
Medium

Zhang, Y., & Lin, H. (2022). Generative Al for automated software architecture
exploration. Journal of Intelligent Information Systems, 59(3), 455—472. https://doi.org/1
0.1007/s10844-021-00674-3

Acknowledgments

The authors profoundly appreciate all the people who have successfully contributed to ensuring
this paper in place. Their contributions are acknowledged however their names cannot be
mentioned.

Conflict of Interest
The author declared no conflict of interest.

How to cite this article: Appachikumar, A.K (2023). Generative Al for Software Architecture
Design: Opportunities and Pitfalls. International Journal of Social Impact, 8(4), 178-188. DIP:
18.02.22/20230804, DOI: 10.25215/2455/080422

© International Journal of Social Impact | ISSN: 2455-670X | 188

https://www.itpro.com/technology/artificial-intelligence/how-ai-coding-is-transf‌or‌min‌g-the-it-industry-in-2025
https://www.itpro.com/technology/artificial-intelligence/how-ai-coding-is-transf‌or‌min‌g-the-it-industry-in-2025
https://doi.org/10.1186/s40411-020-00095-w
https://doi.org/‌10.1145/2‌939672.2939778
https://doi.org/‌10.1145/2‌939672.2939778
https://doi.org/10.1080/10447318.2020.1741118
https://ramchandra-vadranam.medium.com/pair-programming-with-ai-a-new-era-of-collaborative-coding-f3c1a12efaf5?utm_source=chatgpt.com

