

Exploring the Nexus between Scientific Interest and Scientific Creativity in Secondary Education

Rakesh Kumar Singh^{1*}, Seeman Rani Panda¹, Manish Mishra¹, Md. Naseem²

ABSTRACT

The present conceptual paper examines the interrelationship between scientific interest and scientific creativity in the context of secondary education. Scientific interest, reflecting students' intrinsic motivation, curiosity, and engagement, is considered a primary driver for fostering scientific creativity, which encompasses the ability to generate innovative ideas, problem-solving strategies, and novel approaches in scientific contexts (Krapp, 2007; Runco, 2007). Scientific interest not only motivates students to explore scientific phenomena but also encourages persistence, critical thinking, and reflective engagement all of which are essential for creative outcomes (Hidi & Renninger, 2006; Glynn et al., 2011). This paper synthesizes theoretical perspectives from educational psychology, motivation theory, constructivist pedagogy, and creativity research to propose a conceptual framework illustrating how sustained scientific interest can nurture creative thinking in secondary learners. The framework emphasizes the dynamic and reciprocal relationship between curiosity-driven engagement, experimentation, and the development of innovative solutions, highlighting that creative competence is both a product and a reinforcer of interest (Bandura, 1997; Runco, 2007). Furthermore, the study underscores the practical implications for curriculum design, instructional strategies, assessment practices, and teacher professional development. Integrating inquiry-based learning, project-oriented activities, and performance-based assessments can enhance both students' scientific interest and creative abilities, particularly in resource-constrained contexts such as rural and semi-urban schools (Bybee, 2013; Kaur & Kaur, 2022). Ultimately, the conceptual paper highlights that fostering a synergistic relationship between scientific interest and creativity is critical for cultivating learners' higher-order thinking, problem-solving skills, and lifelong engagement with science, preparing them to thrive in an increasingly knowledge-driven and innovative society.

Keywords: *Scientific interest, Scientific creativity, Secondary education, Motivation, Innovation, Inquiry-based learning*

In contemporary science education, there is an increasing emphasis on fostering not only knowledge acquisition but also creative thinking, innovation, and problem-solving skills (OECD, 2019; Bybee, 2013). Preparing students to thrive in a rapidly evolving knowledge society requires that they develop scientific creativity the ability to generate

¹Research Scholar, Guru Ghasidas Vishwavidyalaya Bilaspur C.G.

²Assistant Professor, Vindhya Gurukul College Chunar Mirzapur, U.P.

*Corresponding Author

Received: December 9, 2025; Revision Received: December 18, 2025; Accepted: December 21, 2025

novel ideas, construct innovative solutions, and apply scientific reasoning in diverse contexts (Runco, 2007; Sternberg, 2018). Scientific creativity is therefore recognized as a core competency in 21st-century education, complementing traditional content knowledge with critical thinking, adaptability, and imaginative problem-solving (Beghetto & Kaufman, 2010). Scientific interest functions as a motivational and affective foundation for creativity. It drives learners to explore phenomena, ask meaningful questions, design experiments, and engage with science beyond routine memorization (Krapp, 2007; Glynn et al., 2011). Students who are genuinely interested in scientific topics are more likely to invest effort, take intellectual risks, and persist in solving complex problems, thereby facilitating the development of creative skills (Hidi & Renninger, 2006; Palmer, 2009). The link between interest and creativity is particularly significant in secondary education, where learners are developing cognitive flexibility, higher-order thinking skills, and the ability to synthesize knowledge across disciplines. During this stage, curiosity-driven exploration can cultivate divergent thinking and innovation, which are essential for scientific inquiry and future academic and professional success (Krapp, 2007; Mumford et al., 2003). Despite its recognized importance, scientific creativity often remains underemphasized in traditional curricula that prioritize rote memorization, standardized testing, and passive learning (Bybee, 2013; Kaur & Kaur, 2022). Many classrooms lack opportunities for inquiry, open-ended experimentation, and problem-based learning, which are critical for nurturing creativity (Holstermann, Grube, & Bögeholz, 2010). Recognizing the nexus between scientific interest and scientific creativity provides valuable insights into instructional design and educational policy. Integrating strategies that simultaneously cultivate curiosity, engagement, and innovative thinking can transform secondary science education into a student-centered, inquiry-driven, and creativity-enhancing experience (Deci & Ryan, 2000; Hidi & Renninger, 2006). Such an approach not only promotes academic achievement but also equips learners with the skills, mindset, and motivation necessary for lifelong engagement with science and innovation in the 21st century.

This conceptual paper aims to synthesize theoretical perspectives, empirical research, and educational models to explore how sustained scientific interest can foster scientific creativity among secondary school learners, providing both a theoretical framework and practical implications for curriculum development, pedagogy, and assessment.

Conceptual Understanding of Scientific Interest

Scientific interest is defined as a psychological state characterized by focused attention, enjoyment, and intrinsic motivation toward scientific phenomena (Krapp, 2007). It reflects a learner's willingness to engage with scientific content, explore underlying principles, and persist in problem-solving tasks. Interest is multidimensional, encompassing affective components, such as curiosity, excitement, enjoyment, and emotional engagement, as well as cognitive components, including the desire to understand, question, and investigate scientific phenomena (Renninger & Hidi, 2011; Palmer, 2009). Research demonstrates that students with higher scientific interest are more likely to exhibit increased persistence, engagement, self-regulation, and problem-solving abilities during inquiry-based learning activities (Ainley, Hidi, & Berndorff, 2002; Glynn et al., 2011). They are also more inclined to engage in exploratory behaviors, including designing experiments, forming hypotheses, and reflecting on outcomes, which are essential for both conceptual understanding and creative thinking in science (Hidi & Renninger, 2006; Palmer, 2009). According to Self-Determination Theory (SDT), intrinsic motivation, which is closely associated with interest, develops when learners' needs for autonomy (freedom to make choices), competence (feeling capable in completing tasks), and relatedness (connection with teachers, peers, or

subject matter) are fulfilled (Deci & Ryan, 2000; Niemiec & Ryan, 2009). When these psychological needs are satisfied, learners are more likely to experience sustained scientific interest, engage in deep learning, and pursue creative problem-solving. Moreover, scientific interest has been shown to interact dynamically with the learning environment. Contexts that provide hands-on experiments, inquiry-based projects, collaborative investigations, and opportunities to explore real-world phenomena enhance interest and stimulate curiosity (Holstermann, Grube, & Bögeholz, 2010; Kaur & Kaur, 2022). Students in such environments are more likely to transfer interest into scientific creativity, generating novel ideas and innovative solutions while developing essential process skills. In essence, scientific interest serves as a catalyst that fosters both cognitive engagement (analytical reasoning, problem-solving, experimentation) and affective engagement (curiosity, enjoyment, persistence). By creating conditions conducive to exploration, reflection, and hands-on experimentation, interest lays the groundwork for the development of scientific creativity, bridging motivation and skill acquisition in secondary education (Hidi & Renninger, 2006; Palmer, 2009).

Conceptual Understanding of Scientific Creativity

Scientific creativity refers to the ability to generate original, useful, and feasible ideas or solutions within scientific contexts, integrating imagination, reasoning, and problem-solving skills (Runco, 2007; Sternberg, 2018). It is a multidimensional construct that involves both divergent thinking producing multiple possible solutions or ideas for a given problem and convergent thinking refining, evaluating, and selecting the most effective or feasible solution (Guilford, 1967; Mumford et al., 2003). Scientific creativity is not solely a function of cognitive ability; it also depends on motivation, curiosity, prior knowledge, and domain-specific expertise (Amabile, 1996; Beghetto & Kaufman, 2010). Learners who demonstrate high scientific interest are more likely to engage in exploratory behaviors, experimentation, and risk-taking, all of which are essential for generating innovative ideas and solutions (Budiarti, Kurniawan, & Rivani, 2021). Such students exhibit persistence in problem-solving, openness to multiple perspectives, and the ability to integrate knowledge across disciplines, which collectively enhance creative thinking in science. Educational strategies play a crucial role in fostering scientific creativity. Problem-based learning (PBL), inquiry-driven experiments, project-based assignments, and open-ended investigations provide learners with opportunities to test hypotheses, make independent decisions, and reflect critically on outcomes (Subiantoro, 2016; Holstermann, Grube, & Bögeholz, 2010). These pedagogical approaches encourage students to generate novel solutions, adapt ideas based on evidence, and apply knowledge creatively to real-world problems. Furthermore, the learning environment and teacher facilitation are significant contributors to nurturing creativity. Supportive classrooms that allow autonomy, encourage questioning, tolerate mistakes, and promote collaboration tend to enhance students' creative potential (Csikszentmihalyi, 1996; Kaur & Kaur, 2022). Integrating technology, such as virtual labs, simulations, and digital modeling tools, also expands opportunities for experimentation and creative exploration, especially when access to physical laboratories is limited (OECD, 2019). In essence, scientific creativity emerges from the interaction of cognitive skills, motivational factors, and learning opportunities. Students with sustained interest in science are more likely to engage in creative exploration, resulting in higher levels of innovation, problem-solving ability, and scientific literacy. By emphasizing curiosity, experimentation, reflection, and open-ended inquiry, educators can systematically nurture creativity in secondary education, preparing learners for complex, real-world challenges in science and technology (Runco, 2007; Sternberg, 2018).

Theoretical Link between Scientific Interest and Scientific Creativity

- **Motivation-Cognition Interface**

The connection between scientific interest and creativity can be understood through motivational and cognitive frameworks. Interest-driven engagement enhances exploration, risk-taking, and flexible thinking, all of which are central to creativity (Hidi & Renninger, 2006; Krapp, 2007). Self-Determination Theory posits that when learners' needs for autonomy, competence, and relatedness are met, intrinsic motivation flourishes, providing the energy and persistence necessary for creative endeavors (Deci & Ryan, 2000; Niemiec & Ryan, 2009).

- **Reciprocal Reinforcement**

Scientific interest and creativity reinforce each other: curiosity stimulates exploration, which generates creative outputs, and experiencing success in creative tasks further strengthens intrinsic interest (Runco, 2007; Beghetto & Kaufman, 2010). This feedback loop supports sustained engagement and continuous innovation in scientific learning.

CONCEPTUAL FRAMEWORK

Based on a comprehensive synthesis of the literature, the proposed conceptual framework (Figure 1) illustrates how scientific interest functions as a primary driver of scientific creativity, mediated by factors such as student engagement, exploratory behaviors, and the quality of the learning environment (Krapp, 2007; Runco, 2007). Conceptual Model of Scientific Interest and Scientific Creativity (Interest –Engagement- Exploration - Creative Thinking -Innovation -Reinforcement of Interest). The model presents a cyclical and reciprocal process, emphasizing that scientific interest does not merely initiate learning but continuously interacts with creative processes. Initially, interest motivates engagement: learners invest attention, time, and effort in observing phenomena, asking questions, and participating in scientific investigations. This engagement facilitates exploration, where students experiment, test hypotheses, and consider multiple solutions to problems, thereby stimulating creative thinking and innovative outputs (Holstermann, Grube, & Bögeholz, 2010; Subiantoro, 2016). As students achieve success in creative tasks, their self-efficacy, intrinsic motivation, and enjoyment are reinforced, further strengthening their scientific interest (Bandura, 1997; Hidi & Renninger, 2006). This reciprocal relationship forms a positive feedback loop, ensuring that learners remain curious, motivated, and persistent in problem-solving and innovation. Over time, this cycle supports the development of higher-order cognitive skills, adaptive reasoning, and scientific literacy, which are crucial for navigating complex scientific and technological challenges (Runco, 2007; Sternberg, 2018). The framework also highlights the importance of contextual and instructional factors. A supportive learning environment—comprising well-equipped laboratories, collaborative opportunities, teacher guidance, and autonomy-supportive pedagogies—enhances the link between interest and creativity (Kaur & Kaur, 2022; OECD, 2019). Conversely, environments that lack resources or rely heavily on rote learning may disrupt this cycle, limiting opportunities for exploration, engagement, and innovative thinking. By integrating both motivational and cognitive dimensions, this conceptual framework provides a roadmap for educators and policymakers to design instructional strategies that simultaneously nurture curiosity, engagement, and creativity. In secondary education contexts, particularly in regions like Bilaspur, Chhattisgarh, fostering such synergistic interactions between scientific interest and creativity can significantly enhance students' problem-solving abilities, innovation, and lifelong engagement with science.

Educational Implications

The conceptual framework highlighting the nexus between scientific interest and scientific creativity provides several practical insights for enhancing secondary science education. Implementing these implications can create a synergistic environment where students' curiosity, engagement, and creative potential are nurtured systematically.

- **Curriculum Design:** Curricula should be structured to integrate problem-solving, inquiry-based, and project-oriented modules that stimulate curiosity, experimentation, and creativity (Bybee, 1997; Subiantoro, 2016). Lessons can incorporate real-world scientific problems, case studies, and collaborative projects that encourage students to explore multiple solutions and reflect on outcomes. Embedding open-ended investigations and cross-disciplinary tasks ensures that learners not only acquire knowledge but also develop creative reasoning and innovation skills.
- **Teacher Training:** Teachers play a pivotal role in fostering both interest and creativity. Professional development programs should train educators to create autonomy-supportive classrooms, facilitate inquiry-based learning, encourage divergent thinking, and provide constructive feedback (Holstermann, Grube, & Bögeholz, 2010; Kaur & Kaur, 2022). Teachers should also be skilled in motivational strategies, connecting scientific concepts to students' everyday experiences, local contexts, and societal challenges, thereby enhancing relevance and engagement.
- **Assessment Reforms:** Traditional examinations often fail to capture students' creative potential and process skills. Assessment strategies should shift toward performance-based evaluations, including science portfolios, project reports, lab experiments, innovation projects, and peer assessments (Osborne, Simon, & Collins, 2003; Bybee, 2013). Such assessments provide meaningful feedback, reinforce creative engagement, and motivate learners to apply knowledge in novel contexts.
- **Equity in Access:** Equitable access to laboratories, equipment, and experiential learning opportunities is essential for fostering both scientific interest and creativity, particularly in rural and resource-constrained schools (NCERT, 2021; Chaudhary & Sharma, 2020). Policymakers and educational administrators should prioritize investments in infrastructure, learning materials, and community-based science programs to ensure that all students can engage in hands-on inquiry and innovative problem-solving.
- **Technology Integration:** The use of digital tools, virtual labs, simulations, and online collaborative platforms can expand opportunities for creative experimentation and inquiry-based learning (OECD, 2019; Subiantoro, 2016). Technology enhances engagement, allows exploration of complex or resource-intensive experiments, and provides platforms for collaborative innovation, particularly for schools with limited physical resources.
- **Fostering Collaborative Learning and Reflection:** Collaborative activities such as group investigations, science clubs, peer discussions, and interdisciplinary projects can enhance problem-solving, creativity, and communication skills (Vygotsky, 1978; Bybee, 1997). Reflection sessions after experiments and projects encourage metacognition, helping students evaluate their strategies, learn from mistakes, and refine their creative approaches. By integrating these strategies, secondary education can create a dynamic ecosystem where scientific interest and creativity reinforce each other, leading to enhanced problem-solving abilities, innovation, and lifelong engagement with science. This is particularly relevant in contexts such as Bilaspur, Chhattisgarh, where fostering curiosity-driven and creativity-oriented science

education can significantly improve learning outcomes and prepare students for future scientific and technological challenges.

CONCLUSIONS

Scientific interest and scientific creativity are interconnected and mutually reinforcing constructs that form the foundation of effective science education. Scientific interest, characterized by curiosity, intrinsic motivation, and engagement, serves as a catalyst for learning, encouraging students to participate actively in inquiry, experimentation, and problem-solving activities (Krapp, 2007; Hidi & Renninger, 2006). This engagement, in turn, fosters scientific creativity, enabling learners to generate innovative ideas, explore multiple solutions, and apply scientific reasoning in novel contexts (Runco, 2007; Sternberg, 2018). The relationship is reciprocal: success in creative tasks strengthens interest, persistence, and higher-order thinking, forming a positive feedback loop that reinforces both constructs (Bandura, 1997). To cultivate this synergy, educational systems must implement curriculum innovation, inquiry-based pedagogies, and teacher professional development that emphasize motivation, creativity, and critical thinking (Bybee, 2013; Holstermann, Grube, & Bögeholz, 2010). Equitable access to laboratories, digital tools, and experiential learning opportunities is also essential, particularly in under-resourced regions like Bilaspur, Chhattisgarh, where creativity-focused approaches are not fully integrated (NCERT, 2021; Kaur & Kaur, 2022). By integrating motivational, cognitive, and environmental dimensions, secondary science education can prepare learners for academic success, lifelong engagement, and innovation, equipping them to navigate the challenges of a knowledge-driven, 21st-century society.

REFERENCES

Ainley, M., Hidi, S., & Berndorff, D. (2002). Interest, learning, and the psychological processes that mediate their relationship. *Journal of Educational Psychology*, 94(3), 545–561.

Amabile, T. M. (1996). *Creativity in context*. Westview Press.

Bandura, A. (1997). *Self-efficacy: The exercise of control*. W.H. Freeman.

Beghetto, R. A., & Kaufman, J. C. (2010). Nurturing creativity in the classroom. *Cambridge Handbook of Creativity*, 2nd Ed., 149–172.

Budiarti, I., Kurniawan, E., & Rivani, R. (2021). The relationship between scientific interest and science process skills. *Jurnal Inovasi Pendidikan IPA*, 7(2), 190–201.

Bybee, R. W. (1997). *Achieving scientific literacy: From purposes to practices*. Heinemann.

Bybee, R. W. (2013). *The case for STEM education: Challenges and opportunities*. NSTA Press.

Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and self-determination of behavior. *Psychological Inquiry*, 11(4), 227–268.

Glynn, S. M., Brickman, P., Armstrong, N., & Taasoobshirazi, G. (2011). Science motivation questionnaire II: Validation with science majors and non-science majors. *Journal of Research in Science Teaching*, 48(10), 1159–1176.

Guilford, J. P. (1967). *The nature of human intelligence*. McGraw-Hill.

Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. *Educational Psychologist*, 41(2), 111–127.

Holstermann, N., Grube, D., & Bögeholz, S. (2010). Hands-on activities and their influence on students’ interest. *International Journal of Science Education*, 32(1), 35–56.

Kaur, R., & Kaur, M. (2022). Inquiry-based science learning in India: Challenges and opportunities. *Indian Journal of Educational Research*, 18(2), 45–60.

Krapp, A. (2007). An educational-psychological conceptualization of interest. *International Journal for Educational and Vocational Guidance*, 7(1), 5–21.

Mumford, M. D., Medeiros, K. E., & Partlow, P. J. (2003). Creative thinking: Processes, strategies, and knowledge. *Journal of Creative Behavior*, 37(1), 1–25.

NCERT. (2021). *National Curriculum Framework for School Education*. New Delhi: NCERT.

OECD. (2019). *PISA 2018 Results (Volume I): What Students Know and Can Do*. OECD Publishing.

Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature. *International Journal of Science Education*, 25(9), 1049–1079.

Palmer, D. H. (2009). Student interest and engagement in science learning. *International Journal of Science Education*, 31(6), 761–782.

Renninger, K. A., & Hidi, S. (2011). Revisiting the conceptualization of interest. *Educational Psychologist*, 46(3), 168–184.

Runco, M. A. (2007). *Creativity: Theories and themes: Research, development, and practice*. Elsevier Academic Press.

Sternberg, R. J. (2018). *The nature of creativity*. Cambridge University Press.

Acknowledgment

The author(s) appreciates all those who participated in the study and helped to facilitate the research process.

Conflict of Interest

The author(s) declared no conflict of interest.

How to cite this article: Singh, R.K., Panda, S.R., Mishra, M. & Naseem (2025). Exploring the Nexus between Scientific Interest and Scientific Creativity in Secondary Education. *International Journal of Social Impact*, 10(4), 160-166. DIP: 18.02.015/20251004, DOI: 10.25215/2455/1004015